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Abstract— In this paper, we propose a new scheme for on 

demand reservation of capacity in OBS networks, emulating one-
way signaling protocols. The proposed framework relies on the 
combination of a two-way reservation protocol and a burst 
assembly scheme with a burstification delay enforced to be the 
round-trip-time and which incorporates a Least Mean Square 
filter to predict burst length.  Upon the arrival of the first packet 
in the burst queue, a control packet (setup message) is generated 
and transmitted to reserve resources, based on the prediction 
filter. In this way the reservation process starts/ends 
simultaneously with the burst assembly process.  In this paper, 
we present the main features of the proposed scheme, evaluate its 
performance for both homogeneous and non-homogeneous traffic 
and we further propose an extension with aggressive over-
provisioning of resources that can guarantee lossless operation 
even for extremely cases of bursty traffic. 

 
Index Terms— Least Mean Square filter, traffic analysis, 

Optical burst switching. 
 

I. INTRODUCTION 
ptical burst switching (OBS) has been introduced to 
couple  the merits of packet and circuit switching [1]. 
One of the key developments of OBS was the 

introduction of one-way reservation schemes for the “on-
demand” use of capacity. In one-way reservation schemes 
(also called “Tell-and-Go”), a setup packet is sent in advance 
to precede the arrival of a burst of packets by a time offset. 
This allows for minimizing the pre-transmission delay. The 
differences among the currently proposed one-way schemes 
lie mainly in the time instances that determine the setup and 
the release of resources. In general the setup of a connection 
can be explicit, when switch state is configured for the 
upcoming burst immediately after the arrival of the setup 
message or implicit when it is configured for the actual time 
that the burst will arrive at the node. A number of one-way 
reservation schemes have been proposed for OBS, including 
the just-enough-time (JET) [2], Horizon [3] and just-in-time 
(JIT), [4]. JIT protocol employs explicit setup and explicit or 
implicit release. In particular, an output port is reserved for a 
burst immediately after the arrival of the corresponding setup 
                                                           

This work is supported by European Commission through e-Photon/One+ 
Network of Excellence.   

message; if a wavelength cannot be reserved at that time, then 
the setup message is rejected and the corresponding burst is 
dropped. Horizon and JET protocols employ estimated setup 
and estimated release. Further various scheduling algorithm 
have been proposed to better exploit bandwidth resources such 
as the LAUC with void filling scheme [3] and other variants of 
this scheme. 

One-way schemes are very promising, when applied to a 
network operating at light load, but may result in a high burst 
loss ratio when load increases and there is limited or no 
buffering in the core. Various studies have been carried out to 
estimate the burst loss ratio when wavelength converters 
and/or FDL-based optical buffers are employed. However, all 
these are not yet matured solutions for deployment and 
therefore QoS provision schemes were proposed to assure a 
constant loss ratio. Such schemes include the offset-time-
based scheme [5] that provides an extra time offset to isolate 
different classes of traffic, the composite-burst assembly 
scheme that mixes traffic classes during burst assembly and 
provides QoS via prioritized burst segmentation [6], the 
“preemptive wavelength reservation mechanism”, where each 
class is associated with a predefined usage limit, [7] and the 
“early dropping mechanism” that probabilistically drops 
bursts of a lower priority class in order to guarantee the loss 
probability of higher priority classes of traffic [8]. However, 
all these schemes require either optical buffer or additional 
scheduling /processing that make their deployment difficult. 

On the other hand, two-way reservation protocols 
guarantee loss-less operation in a buffer less OBS network 
[9],[10], but however induce a large delay, associated with the 
establishment of an end-to-end connection. An interest hybrid 
scheme has been recently proposed in [11], that employs both 
two-way and one-way reservation across a network path for a 
given a source-destination pair. 

In this paper, we propose a new scheme that differentiates 
from the abovementioned ones and which truly emulates one-
way reservation. It relies on a two-way reservation protocol 
and a timer-based assembly scheme. The key idea is to tune 
the assembly timer to be equal to the time associated with the 
establishment of the end-to-end connection to synchronize the 
resource reservation with the assembly process. In this way, 
upon the arrival of the first packet in the queue, reservation of 
resources may start simultaneously based on a prediction of 
the burst length. In our study, we have used an N-order 
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Normalised LMS (Least Mean Square) filter that provides 
adequate accuracy [12]. The overall scheme emulates one-way 
reservation in the sense that the burst is transmitted 
immediately after the assembly timer expires. The advantage 
of the scheme is that latency is reduced to the minimum 
possible, burst transmission is guaranteed to be lossless in the 
core, while data losses may only occur at the edge and only 
when prediction underestimates burst size. 

The rest of the paper is organized as follows. Section II 
presents the main concept and the predicting burst size filter, 
while, Section III present evaluation results for both 
homogeneous and Non-homogeneous Poisson packet arrivals. 
In Section IV, we present an extension to the scheme in order 
to integrate losses in the prediction mechanism and provide 
lossless connectivity, avoiding full or partial burst drops. 
These drops are attributed to either filter under-estimations or 
failures in the reservation of resources. 

II. BURST LENGTH PREDICTION AND NETWORK CONCEPT 
OBS networks have been widely associated with the one-way 
signaling protocols. However, burst losses increase fast with 
the increase of network load and it is difficult or quite 
impossible to guarantee a certain level of QoS to end-users. In 
addition, assuming that each OBS edge router services 
concurrently thousands active TCP connections, QoS support 
becomes an unrivaled task that requires cross layer (transport, 
network and physical layer) processing. In the proposed 
framework, a two-way reservation protocol is used in 
combination with a timer-based assembly scheme, where the 
timer has been tuned to be equal to the round-trip time delay. 
Figure 1 illustrates graphically the proposed concept. In 
particular Figure 1a shows the usual case of an one-way 
protocol, where burst is transmitted with no guarantee 
immediately after the expiration of the assembly timer. In 
contrast, in Figure 1b, the assembler that in any case maintain 
a different queue per destination assigns to each queue, an 
assembly timer equal to the RTT of that source-destination 
pair. Upon the arrival of the first packet in the queue, a 
prediction mechanism estimates the size of the queue, at RTT 
time later and immediately transmits a setup packet to reserve 
resources according to that prediction. Upon the return of an 

acknowledge message (see Figure 1c) burst transmission starts 
immediately without the need of a control packet to precede. 
Thus, the time offset usually incorporated in between 
transmission and signaling is not needed in our case and 
therefore latency is further reduced. 
The framework that we propose benefits from the parallel 
execution of the signaling messages and the assembly process, 
and for this a setup message requires a priori knowledge of the 
burst length. There is no doubt that to make a prediction 
algorithm practical for an OBS system, it should not only 
deliver good estimation performance, but also be simple and 
fast so the calculations can be done on-line. In general the 
actual burst size can be different from the predicted one and 
absolutely depends on the prediction mechanism. Within this 
framework, we have implemented an N-order Normalised 
LMS (Least Mean Square) filter that can provide such 
accuracy. Meanwhile, the LMS-based approach outperforms 
the other alternatives in terms of computational simplicity. Its 
time complexity for the coefficient calculation is ࡻሺܰሻ (e.g is 
much less than that of Yule–Walker equations which 
is ࡻሺܰଶሻ. In what follows we provide a description of such a 
filter and how it is configured to predict burst size. 
Let ࢊࡸሺ࢑ሻ be the length (in the time scale) of the kth burst. The 
length of the next incoming burst is then predicted according 
to those of the previous N bursts by 
 
࢑തሺࡸ  ൅ ૚ሻ ൌ ∑ ሾࢎሺ࢏ሻ · ࢑ሺࢊࡸ െ ࢏ ൅ ૚ሻሿࡺ

ୀ૚࢏          (Eq. 1) 
 
where, ݄ሺ݅ሻ, ݅ ߳ሼ1,…ܰሽ are the coefficients of the predictive 
filter. We update the predictive filter coefficients by an 
efficient algorithm [13], where the coefficients for the 
ሺ࢑ ൅ ૚ሻࢎ࢚  prediction are defined as: 
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where, h is the coefficient vector, μ  is an adjustable 
parameter of the filter, ࢋሺ࢑ሻ the residual between the actual 
and the predicted length of the ࢎ࢚࢑ data burst and ሺ܌ۺሻ࢑ the 
vector of  ࢊࡸሺ࢐ሻ, ሺ ࢐ ࣕ ሼሺ࢑ െ ૚ሻ · ࡺ ൅ ૚,… , ࢑ ·  .ሽሻࡺ

 

    

 

 
 

 
 

Figure 1: (a) Usual case of burst assembly process and one-way reservation where δ is the Processing time of the setup packet. (b) Proposed
scheme – Reservation Phase. (c) Proposed scheme –Burst transmission phase and Reservation of the next Burst.  
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In order to evaluate the LMS-based prediction filter, we have 
carried out static experiments over a single edge router with 
constant as well as varying packet arrival rates. TABLE 1 
summarizes our findings. In general, the prediction error was 
found to be ~1.5% in the case of constant arrival rates that 
translates to +/- 15KB per MB transmitted. The mean and 
variance of the prediction error for an arrival rate of 200, 400, 
600 and 800 kpackets/sec are shown in the last two columns of 
TABLE 1. It can be seen that the LMS filter performs better 
for large arrival rates (i.e. 800kpacket/sec), primarily because 
of the higher number of samples that lends the prediction 
algorithm a higher accuracy.  

In addition, TABLE 1 shows the performance of the filter 
against the instant changes in the packet arrival rates shown in 
the 1st column. In particular, TABLE 1 provides the elapsed 
time until the filter error, ࢋሺ࢑ሻ reaches a steady state with a 
variance below 10, the number of the bursts transmitted within 
that period as well the ࢋሺ࢑ሻ average and variance only for that 
period. It is clear that LMS filter exhibits a delay in following 
the traffic increase (or decrease) and which delay increases 
with the magnitude of increase (or decrease). For example, the 
filter mechanism needs 1.42sec to adapt to an increase from 
100kpackets to 800packets/sec, while 18% less time (1.16sec) 
for an increase from 100kpackets to 200packets/sec. However 
a major difference is denoted in the mean and variance of the 
error in that period. In particular, in the latter case 
(100 200kpackets/sec) the mean error of the filter is only 
12.9% with a variance of 408.3 while in the first case 
(100 800kpackets/sec) both values are by far larger.  

This behavior is inherent with LMS-based algorithms since 
they constitute a good compromise of convergence speed and 
tracking performance. While applying LMS for traffic 
prediction, on one hand, a larger step size reduces prediction 
delay, but brings the problem of convergence that leads to 
increasing prediction error, while on the other hand, a smaller 
step size gives less prediction error but a longer prediction 
delay. Figure 2 shows the error variation per burst transmitted 
around the change for an increase/decrease of 100k to 
800kpackets/sec in the arrival rate. 

III. EVALUATION IN LARGE SCALE NETWORK TOPOLOGIES 
We have evaluated the overall performance of the proposed 
scheme on the NSF network topology using ns-2 simulator. 
The NSF network consists of 8 edge and 6 core nodes, where 
each link was employing two wavelengths at 10Gbps. TABLE 

2 summarizes the RTT delays per edge node that were used 
for assembling the bursts.  
The packet generating source was modeled with a Non-
homogeneous Poisson process (NHPP) model. A NHPP is a 
Poisson process whose arrival rate λ at time t is a function of 
time ࡼࡼࡴࡺࣅሺ࢚ ). More specifically, the number of arrivals 
 :ሻ in the interval [0,t) follows the distribution࢚ሺࡺ
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Taking into account the variations in the packet arrival rate 
during a day, [14], and the packet sizes drawn from an Internet 
mix size distribution [15], we have defined a representative 
stepwise function for λ(t) and developed a new traffic agent 
for ns-2. The above parameters were used so that the yielding 
average blocking probability to be less than 1%. In addition, 
we used a two-way signaling protocol with timed and delayed 
reservation [10].  
Our study has been focused on the two cases, namely when 
prediction filter under-estimates and over-estimates the actual 
burst length and compared the performance of the overall 

 

TABLE 2 – Round Trip Time delays(ms) per edge node for the  
NSF network topology 

Edge 
Node 0 1 2 3 4 5 6 7 
Ave 30.4 36.9 22.1 23.4 23.4 28.6 29.4 32.6
Min 6.0 11.0 8.0 3.0 3.0 3.0 13.0 6.0
Max 49.0 59.0 41.0 46.0 46.0 59.0 51.0 46.0
Var 257.6 305.2 189.1 302.6 302.6 529.9 207.9 244.6

 

 
Figure 2: Error variation per burst transmitted for a rate change of (a)
100k to 800kpackets/sec and (b) 800k to 100kpackets/sec.  

TABLE 1 – Performance of LMS filter for ߤ ൌ 0.1, ߋ ൌ 8  
Error during the change Error in 

steady state 
λ 

(kpackets/sec) Time (sec) Bursts AVE VAR AVE VAR
100 200 1.16 27 12.9 408.5 1.72 4.32 
100 400 1.25 29 17.2 776.7 1.48 3.22 
100 600 1.37 32 17.5 860.8 1.32 2.13 
100 800 1.42 33 17.7 924.23 1.21 1.49 
200 100 1.24 29 17.6 985.5   
400 100 1.33 31 42.1 7081.5   
600 100 1.46 34 59.8 17235.7   
800 100 1.51 35 78.1 31810.4   
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upon the arrival of the next packet in the queue. The extra 
packets resided in the queue are added to this new prediction, 
thus requesting sufficient resources for the oncoming larger 
burst. In this case, burst length may continuous increase and 
its yielding value depends on the blocking ratio in the core. It 
must be noted here that in this case filter does not update its 
coefficients, while in the first case does update them trying to 
compensate for its prediction error.  

Figure 4a shows the yielding mean size of the transmitted 
bursts in that case for different packet arrival rates, while 
Figure 4b the corresponding packet queuing time. It can be 
seen that the size of the transmitted bursts increase from 2MB 
to more than 16MB, while the difference in the average 
queuing times is constant with the only exception the case of 
λ=100kpacket/sec. From Figure 4b, it can be seen that more 
than 90% of the total number of packets experience a delay 
smaller than the RTT time, which for the specific source-
destination pair was 41.5msec. To this end, most packets are 
transmitted within the first two burst assembly periods, 
assuming that average waiting time in the queue is RTT/2. In 
particular, the 70% of the total packets exhibit a delay smaller 
than RTT time and half of them a delay smaller than RTT/2. 
In the case of λ=100kpacket/sec curve, average delay is 
smaller and it is the 95% of all the packets that experience a 
delay less than RTT time. This is because bursts transmitted 
are smaller and thus absolute error in terms of Kbytes 
insignificant. To this end, a very small percentage of the 
transmitted bursts leave data in the queue (see Figure 3). 

The third case of this study corresponds to a more realistic 
network scenario, where packet arrival rate changes over time 
and this change can be either fast or slow. Absolute prediction 
error in such cases is not constant, depends on the differential 
change of the arrival rate and can be positive or negative. It is 
our goal to always over provisioning reservation of resources 
to avoid excess packet delays and guarantee lossless 
connectivity. To this end, we can allow an unconstrained burst 
size increase as long as a successful connection can be 
established to accommodate it.  

To this end, we have extended the filter mechanism to 
accommodate large traffic violations and achieve faster 
overestimated predictions in the case that the residual error 
݁ሺ݇ሻ  varies vastly. We compensate for this problem by an 
aggressive resource reservation method to increase the 
probability of the filter to make an overestimation faster. 
Instead of making ܮ௥ሺ݇ ൅ 1ሻ ൌ ෨௣ሺ݇ܮ ൅ 1ሻ  (where ܮ௥ is the 
reserved length and ܮ௣ is the predicted length), we define the 
reservation length as  ܮ௥ሺ݇ ൅ 1ሻ ൌ ෨௣ሺ݇ܮ ൅ 1ሻ ൅  is ߜ where , ߜ
a correction parameter added. In [12], the root mean square 
(RMS) of the sample residuals of the filter, were used, which 
however performs good only for smooth traffic, with small 
variations in the load. Here, we propose the use of a more 
general function of the prediction error to adjust the correction 
parameter. In particular, the main idea is to estimate the traffic 
variation trend according to the sign continuity and absolute 
value of ݁ሺ݇ሻ, [16]. Then, the estimated adjustment quantity 
 ሺ݇ሻ is added to the LMS prediction value, so that the newߜ
predictor could follow the variation of traffic trend more 
quickly, or even forecast it in advance. The general function 
considered here is as follows: 

 
ሻ࢑ሺࢾ ൌ ࢔ሻ࢑ሺ࢔ࢍ࢏࢙ ൈ ሻሻ࢑ሺࢋሺࢌ ൈ  ,ሻ                 (Eq. 3)࢑ሺࢋ

where ݊݃݅ݏሺ݇ሻ is the sign continuity function and is decided 
based on the sign of the prediction error, ݁ሺ݇ሻ. For example, if 
at several continuous moments, ݁ሺ݇ሻ has a same negative (or 
positive) sign, this is probably an indication of a persistence 
traffic increase in the variation trend. For such cases, the 
normal LMS predictor presents a delay in accommodating the 
new traffic trend (see TABLE 1). An exponential weight to the 
importance of the sign continuity function is given by rising 
  .ሺ݇ሻ to n݊݃݅ݏ

Function ݂ሺ݁ሺ݇ሻሻ is decided by the absolute value of the 
prediction error, ݁ሺ݇ሻ . For example if we set ݂ሺ݁ሺ݇ሻሻ ൌ
|݁ሺ݇ሻ|

௘ൗߪ , where ߪ௘ is the error standard deviation, then error 
correction parameter is normalized by the mean value. In such 
a case, the prediction delay would be effectively reduced 
during a bursty increase in the packet arrival rate. However, 
too large |݁ሺ݇ሻ| may lead to large error on prediction. So, it is 
necessary to provide a compromise and set an upper limit in 
relation to |݁ሺ݇ሻ|. For our analysis we have used the standard 
deviation of the average values measured in Figure 4, denoted 
here as ߪ௠௘௔௡ ௕௨௥௦௧  , and we set the function equal to 
݂ሺ݁ሺ݇ሻሻ ൌ  ௠௘௔௡ ௕௨௥௦௧ߪ  ൈ |݁ሺ݇ሻ| . This would compensate 
rapidly, fast incremental increases in the packet arrival rate 
with the minimum possible error. From Figure 4, we may 
calculate that ߪ௠௘௔௡ ௕௨௥௦௧  ൌ 5.2. 

We have evaluated the proposed aggressive resource 
reservation scheme (ARR) considering two cases of traffic 
violation, namely fast violations with an increase of 
400kpacket/sec per 200msec and slow with an increase of 
100kpacket/sec. What is of importance to measure is the 
yielding size of the transmitted bursts (Figure 5) and the 
queuing time of the assembled packets (Figure 6).  

From Figure 5, the average sizes of the transmitted bursts 
were measured to be 7.8 and 7.3MB respectively for the two 
cases, while the 20% of the transmitted burst exhibited a very 
large size of more than 10MB. It is worth noting however, that 
only the 1% and 6% of them had a size larger than 30MB 
respectively for the two cases of slow and fast changes. 
It is therefore clear that the fast changes in the packet arrival 
rate increases the yielding burst size. This increase is evidence 
that the queuing time of the assembled packets increases as 

 
Figure 5:  Burst length density functions for fast and slow rate
changes. 
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well, since a higher number of packets postpone for the next 
assembly cycle their transmission, and thus forming larger 
bursts. However, it is the packet delay that really matters since 
once a burst is transmitted, assembly process resets again. 
Figure 6(a) and (b) displays the corresponding distribution of 
packet queuing times with and without the aggressive resource 
reservation. It is clear that the percentage of packets with a 
delay higher than RTT is reduced. In particular for the case of 
a slow change in the arrival rate, 50% of the packets exhibited 
an average delay of 41msec (~RTT time), while the 
corresponding percentage for the ARR scheme rises to 63% 
(blue and green columns in Figure 6a and b). Similarly in the 
case of fast changes in the arrival rate, it is only the 41% of the 
packets with a delay smaller than RTT and it is significantly 
improved to 55% for the ARR case (red and purple columns in 
Figure 6a in b). The ratio of improvement is 9% and 34% 
respectively. 
    To this end, we may argue that the proposed aggressive 
resource reservation mechanism compensates rapidly bursty 
increases in the traffic load with an average packet queuing 
time that is comparable to that of one-way reservation. In 
addition, lossless operation is achieved at the cost however of 
increasing the probability of wasting bandwidth resources.  In 
any case, it can be assumed that capacity in the core network 
is abundant, and it is the “on demand” use of this resource that 
delivers a performance advance.  

V. CONCLUSIONS 
    In this paper, we have presented a novel scheme that 
emulates one-way signaling and provides lossless burst 
connectivity. It relies on the combination of a two-way 
reservation and a burst assembly scheme that incorporates a 
linear burst length prediction filter. In the proposed scheme 
the burstification delay is enforced to be equal to the round-
trip-time delay, while the two-way reservation process starts 
immediately for the estimated duration of the burst, upon the 
arrival of the first packet in the queue. To this end, reservation 
and assembly process start and complete simultaneously.  
    In this paper, we have presented the main features of the 
proposed scheme and evaluated its performance with respect 
to data losses and latency induced. We have further proposed 
an extension to the scheme to provide lossless connectivity via 
the overprovision of resources. The scheme guarantees zero 
packet losses, on demand use of the available capacity with a 
packet delay that is comparable to that of one –way protocols. 
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Figure 6:  Packet queuing time distribution (a) without and (b) with
the addition of the aggressive resource mechanism. Fast and slow
changes correspond to 400kpacket and 100kpacket per sec increases
in the packet arrival rate. 
 

(a) 
 
 
 
 
 

 
 
 

 
 
 
 
 

 
 
(b) 

0

5

10

15

20

25

30

35

40

%
 P
ac
ke
ts

Queuing time (sec)

NHPP SLOW CHANGE

NHPP FAST CHANGE

0

5

10

15

20

25

30

35

40

%
 P
ac
ke
ts
 

Queuing time (sec)

NHPP SLOW CHANGE WITH ARR

NHPP FAST CHANGE WITH ARR


